THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016
Suggested Solution to Quiz 1

1. (a) Let $A=\left\{-\frac{1}{n}: n \in \mathbb{N}\right\}$ and $B=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.

Then $a<0<b$ for all $a \in A$ and $b \in B$, but $\sup A=\inf B=0$.
Therefore, the statement is false.
(b) Let $A_{n}=[-(n+1),-n]$ for $n \in \mathbb{N}$.
A_{n} is bounded below, but $A=\bigcup_{n=1}^{\infty} A_{n}=(-\infty,-1]$, which is not bounded below.
Therefore, the statement is false.
(c) A is nonempty, so there exists at least one element a in the set A.

By definition, sup A and $\inf A$ are upper bound and lower bound of A respectively.
Therefore, $\inf A \leq a \leq \sup A$.
2. (a) Let $x \in A$.

Then, $x \in\left(0, x_{n}\right)$ for some $n \in \mathbb{N}$.
Therefore, $0<x<x_{n}<1$, which means A is bounded above by 1 and bounded below by 0 .
(b) - Let $\epsilon>0$.

Take $x=\min \left\{\frac{\epsilon}{2}, \frac{x_{1}}{2}\right\}$.
Note that $0<x \leq \frac{x_{1}}{2}<x$, so $x \in\left(0, x_{1}\right) \subset A$.
Also, $0<x \leq \frac{\epsilon}{2}<\epsilon$, so $\inf A=0$.

- Since $x_{n}<1$ for all $n \in \mathbb{N},\left\{x_{n}: n \in \mathbb{N}\right\}$ is bounded above and $\sup \left\{x_{n}: n \in \mathbb{N}\right\}$ exists.

Let $u=\sup \left\{x_{n}: n \in \mathbb{N}\right\}$.
Let $x \in A$, then $x \in\left(0, x_{n}\right)$ for some $n \in \mathbb{N}$.
Therefore, $x<x_{n} \leq u$, which means u is an upper bound of A.
Let $\epsilon>0$, then exists $n_{0} \in \mathbb{N}$ such that $u-\epsilon<x_{n_{0}} \leq u$.
Take $x=\max \left\{\frac{x_{n_{0}}+u-\epsilon}{2}, \frac{x_{n_{0}}}{2}\right\}$.
Note that $x \geq \frac{x_{n_{0}}}{2}>0$ and $\frac{x_{n_{0}}+u-\epsilon}{2}, \frac{x_{n_{0}}}{2} \leq x_{n_{0}}$ which implies $x<x_{n_{0}}$.
Therefore, $x \in\left(0, x_{n_{0}}\right)$.
Also, we have

$$
u-\epsilon<\frac{x_{n_{0}}+u-\epsilon}{2} \leq x<x_{n_{0}} \leq u
$$

Therefore, $\sup A=u$.
3. - Case 1: $x>0$

Then $y>x>0$ and $\frac{\sqrt{3}}{y-x}>0$.

By Archimedean property, there exists $n \in \mathbb{N}$ such that

$$
\begin{aligned}
n & >\frac{\sqrt{3}}{y-x} \\
\frac{n}{\sqrt{3}}(y-x) & >1 \\
\frac{n}{\sqrt{3}} y & >1+\frac{n}{\sqrt{3}} x
\end{aligned}
$$

By the refined Archimedean property, since $\frac{n}{\sqrt{3}} x>0$, there exists $m \in \mathbb{N}$ such that

$$
\begin{aligned}
& m-1 \leq \frac{n}{\sqrt{3}} x<m \\
& m \leq 1+\frac{n}{\sqrt{3}} x<\frac{n}{\sqrt{3}} y
\end{aligned}
$$

Therefore, $\frac{n}{\sqrt{3}} x<m<\frac{n}{\sqrt{3}} y$ and hence

$$
x<\frac{m \sqrt{3}}{n}<y .
$$

- Case 2: $x \leq 0$
$-x \leq 0$, then $-x+\sqrt{3}>0$ and so $-\frac{x}{\sqrt{3}}+1>0$.
By Archimedean property, there exists $N \in \mathbb{N}$ such that

$$
\begin{aligned}
N & >-\frac{x}{\sqrt{3}}+1 \\
x+(N-1) \sqrt{3} & >0
\end{aligned}
$$

By using case 1 , there exist $p, q \in \mathbb{N}$ such that

$$
y+(N+1) \sqrt{3}>\frac{p}{q} \sqrt{3}>x+(N-1) \sqrt{3}
$$

and so

$$
\left.y>\left(\frac{p}{q}-N+1\right) \sqrt{3}\right)>x
$$

Since $\frac{p}{q}-N+1 \in \mathbb{Q}$, there exist $m, n \in \mathbb{Z}$ such that $\frac{m}{n}=\frac{p}{q}-N+1$. Then, we have

$$
x<\frac{m \sqrt{3}}{n}<y
$$

4. (a) If I_{n} is a sequence of closed and bounded intervals which is nested, i.e.

$$
I_{n+1} \subset I_{n} \quad \text { for all } n \in \mathbb{N}
$$

then there exists $p \in \mathbb{R}$ such that $p \in I_{n}$ for all $n \in \mathbb{N}$.
(b) (i) Note that $I_{n_{r}}$ is a subsequence of I_{n}, so $I_{n_{r}}$ is a sequence of closed and bounded intervals.

Also $n_{r}<n_{r+1}$, so

$$
I_{n_{r+1}} \subset I_{n_{r+1}-1} \subset I_{n_{r+1}-2} \subset \cdots \subset I_{n_{r}}
$$

which implies that $I_{n_{r}}$ is a nested sequence.
(ii) Note that $n_{r} \geq r$ for all $r \in \mathbb{N}$, so $I_{n_{r}} \subset I_{n}$.

Suppose that $\xi I_{n_{r}}$ for all $r \in \mathbb{N}$.
Let $j \in \mathbb{N}$, then $n_{j} \geq j$ and so $\xi \in I_{n_{j}} \subset I_{j}$.
Therefore, $\xi \in I_{j}$ for all $j \in \mathbb{N}$.

