THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016 Suggested Solution to Quiz 1

- 1. (a) Let $A = \left\{ -\frac{1}{n} : n \in \mathbb{N} \right\}$ and $B = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$. Then a < 0 < b for all $a \in A$ and $b \in B$, but $\sup A = \inf B = 0$. Therefore, the statement is false.
 - (b) Let $A_n = [-(n+1), -n]$ for $n \in \mathbb{N}$. A_n is bounded below, but $A = \bigcup_{n=1}^{\infty} A_n = (-\infty, -1]$, which is not bounded below. Therefore, the statement is false.
 - (c) A is nonempty, so there exists at least one element a in the set A. By definition, $\sup A$ and $\inf A$ are upper bound and lower bound of A respectively. Therefore, $\inf A \leq a \leq \sup A$.
- 2. (a) Let $x \in A$.

Then, $x \in (0, x_n)$ for some $n \in \mathbb{N}$.

Therefore, $0 < x < x_n < 1$, which means A is bounded above by 1 and bounded below by 0.

(b)

• Let $\epsilon > 0$. Take $x = \min\left\{\frac{\epsilon}{2}, \frac{x_1}{2}\right\}$. Note that $0 < x \le \frac{x_1}{2} < x$, so $x \in (0, x_1) \subset A$. Also, $0 < x \le \frac{\epsilon}{2} < \epsilon$, so $\inf A = 0$.

- Since $x_n < 1$ for all $n \in \mathbb{N}$, $\{x_n : n \in \mathbb{N}\}$ is bounded above and $\sup\{x_n : n \in \mathbb{N}\}$ exists. Let $u = \sup\{x_n : n \in \mathbb{N}\}.$
 - Let $x \in A$, then $x \in (0, x_n)$ for some $n \in \mathbb{N}$.

Therefore, $x < x_n \leq u$, which means u is an upper bound of A.

Let $\epsilon > 0$, then exists $n_0 \in \mathbb{N}$ such that $u - \epsilon < x_{n_0} \leq u$. Take $x = \max\left\{\frac{x_{n_0} + u - \epsilon}{2}, \frac{x_{n_0}}{2}\right\}$. Note that $x \ge \frac{x_{n_0}}{2} > 0$ and $\frac{x_{n_0} + u - \epsilon}{2}, \frac{x_{n_0}}{2} \le x_{n_0}$ which implies $x < x_{n_0}$. Therefore, $x \in (0, x_{n_0})$.

Also, we have

$$u - \epsilon < \frac{x_{n_0} + u - \epsilon}{2} \le x < x_{n_0} \le u$$

Therefore, $\sup A = u$.

• Case 1: x > 03.

Then y > x > 0 and $\frac{\sqrt{3}}{y - x} > 0$.

By Archimedean property, there exists $n \in \mathbb{N}$ such that

$$n > \frac{\sqrt{3}}{y-x}$$
$$\frac{n}{\sqrt{3}}(y-x) > 1$$
$$\frac{n}{\sqrt{3}}y > 1 + \frac{n}{\sqrt{3}}x$$

By the refined Archimedean property, since $\frac{n}{\sqrt{3}}x > 0$, there exists $m \in \mathbb{N}$ such that

$$m - 1 \le \frac{n}{\sqrt{3}}x < m$$
$$m \le 1 + \frac{n}{\sqrt{3}}x < \frac{n}{\sqrt{3}}y$$

Therefore, $\frac{n}{\sqrt{3}}x < m < \frac{n}{\sqrt{3}}y$ and hence

$$x < \frac{m\sqrt{3}}{n} < y$$

• Case 2: $x \leq 0$

 $-x \le 0$, then $-x + \sqrt{3} > 0$ and so $-\frac{x}{\sqrt{3}} + 1 > 0$. By Archimedean property, there exists $N \in \mathbb{N}$ such that

$$N > -\frac{x}{\sqrt{3}} + 1$$
$$+ (N-1)\sqrt{3} > 0$$

By using case 1, there exist $p, q \in \mathbb{N}$ such that

$$y + (N+1)\sqrt{3} > \frac{p}{q}\sqrt{3} > x + (N-1)\sqrt{3}$$

and so

$$y > \left(\frac{p}{q} - N + 1\right)\sqrt{3}\right) > x.$$

Since $\frac{p}{q} - N + 1 \in \mathbb{Q}$, there exist $m, n \in \mathbb{Z}$ such that $\frac{m}{n} = \frac{p}{q} - N + 1$. Then, we have $x < \frac{m\sqrt{3}}{n} < y$.

4. (a) If I_n is a sequence of closed and bounded intervals which is nested, i.e.

x

$$I_{n+1} \subset I_n$$
 for all $n \in \mathbb{N}$,

then there exists $p \in \mathbb{R}$ such that $p \in I_n$ for all $n \in \mathbb{N}$.

(b) (i) Note that I_{n_r} is a subsequence of I_n , so I_{n_r} is a sequence of closed and bounded intervals. Also $n_r < n_{r+1}$, so

$$I_{n_{r+1}} \subset I_{n_{r+1}-1} \subset I_{n_{r+1}-2} \subset \dots \subset I_{n_r}$$

which implies that I_{n_r} is a nested sequence.

(ii) Note that $n_r \ge r$ for all $r \in \mathbb{N}$, so $I_{n_r} \subset I_n$. Suppose that ξI_{n_r} for all $r \in \mathbb{N}$. Let $j \in \mathbb{N}$, then $n_j \ge j$ and so $\xi \in I_{n_j} \subset I_j$. Therefore, $\xi \in I_j$ for all $j \in \mathbb{N}$.